
Combinatorics, 2016 Fall, USTC

Week 13, November 29 & December 1

Ramsey's Theorem

Theorem 1. Let n, k satisfying
(
n
s

)
21−(s

2) < 1. Then R(s, s) > n.

Proof. We need to �nd a 2-edge-coloring ofKn such that it has NOmonochro-

matic clique Ks.

Consider a random 2-edge-coloring of Kn: each edge is colored by blue or

red, each with probability 1
2
, independent of other edges.

Let A be the event that the so-de�ned Kn has a monochromatic Ks. For

X ∈
(

[n]
s

)
, let AX be the event that X is a monochromatic Ks. ←→ A =

∪
X∈([n]

s )AX

P (A) = P
(
∪

X∈([n]
s )AX

)
≤

∑
X∈([n]

s )

P (AX) =

(
n

s

)
21−(s

2) < 1,

Thus P (AC) > 0, that is the probability that Kn has NO monochromatic

Ks is positive. So there must exist a 2-edge-coloring of Kn such that it has

NO monochromatic clique Ks.

Corollary 2. R(k, k) ≥ 1
e
√

2
k2

k
2 .

Proof. Let n = 1
e
√

2
k2

k
2

(
e
2

)1/k
. Recall that

(
n
k

)
< nk

k!
and k! ≥ e

(
k
e

)k
, thus

we have that

(
n

k

)
21−(k

2) <
nk

e
(
k
e

)k 21−(k
2) =

(en
k

)k
·
(

2

e

)
· 2−(k

2);
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by substituting n = 1
e
√

2
k2

k
2

(
e
2

)1/k
, it becomes that

(
n
k

)
21−(k

2) < 1. By Theo-

rem, we get

R(k, k) > n =
1

e
√

2
k2

k
2

(e
2

)1/k

≥ 1

e
√

2
k2

k
2 .

Corollary 3.

1

2
6 lim

s−→∞

log2 R(s, s)

s
6 2

Proof. This can be derived from R(s, s) 6
(

2s−2
s−1

)
The Probabilistic Methods in Combinatorics

We remark on the following two ideas in the proof.

(i). Imagine we need to �nd some combinatorial object satisfying certain

property, call them �good� object. We consider a random object. If the

probability that the random object is �good� is positive, then there must

exist �good� objects.

(ii). To compute the probability of being �good�, we often compute the

probability of being �bad� and aim to prove this probability is strictly less

than 1.

De�nition 4. A probability space is (Ω, P ), where Ω is a �nite set and P :

2Ω → [0, 1] is a function assigning a number in the interval [0, 1] to every

subset of Ω such that

(i) P (∅) = 0,

(ii) P (Ω) = 1, and

(iii) P (A ∪B) = P (A) + P (B) for disjoint sets A,B ⊂ Ω.
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� Any subset A of Ω is called an event, and P (A) =
∑

ω∈Ω P ({ω}).

� A random variable is a function X : Ω→ R

� Expectation: E[X] :=
∑

ω∈Ω P ({ω}) ·X(ω).

� Two events A,B in the probability space (Ω, P ) are independent if

P (A ∩B) = P (A)P (B).

� The linearity of expectations. For any two random variables X

and Y on Ω, we have

E[X + Y ] = E[X] + E[Y ]

.

De�nition 5. Let F be a family of sets. We say F is a k-family, if every set

in F is of size k.

De�nition 6. Let X = ∪A∈FA, we say F is 2-colorable if there exists a func-

tion f : X → {blue, red} such that every set A ∈ F is not monochromatic

(i.e. A has at least one blue element of X and at least one red element of

X).

Remark. When k = 2, 2-family F can be viewed as a graph G. Then F is

2-colorable i� G is bipartite.

De�nition 7. For ∀k, let m(k) := min|F| over all k-family F which are

NOT 2-colorable.
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(1) m(k) 6 t⇔ ∃k-family F which is not 2-colorable but |F| = t.

(2) m(k) > t⇔ ∀k-family F with |F| = t is 2-colorable.

Fact:m(2) = 3

Theorem 8. m(k) > 2k−1 ⇔ every k-family F with |F| = 2k−1 − 1 is

2-colorable.

Proof. We need to �nd a function f : X → {blue, red} where X = ∪A∈FA

s.t. ∀A ∈ F has a blue element and a red element. We sat such f is good.

Otherwise call it bad. We then consider a random function ϕ on X, that

is each x ∈ X is colored by blue or red with probability
1

2
, independent of

other choice. Let B be the event that ϕ is bad, i.e. there exists some A ∈ F

which is monochromatic.

For A ∈ F , let BA be the event that A is monochromatic. So B =

∪A∈FBA.

It is easy to see for ∀A ∈ F

P (BA) = 2(
1

2
)1−k = 21−k

Thus,

p(B) 6
∑
A∈F

P (BA) = |F|21−k < 1

So P (ϕ is good) = P (BC) > 0.

Since

P (ϕ is good) =
# good functions

all functions
> 0

⇒ there must exist good functions.
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De�nition 9. The random graph G(n, p) for 0 6 p 6 1 is a graph with vertex

set {1, 2, ..., n}, where each of potential
(
n
2

)
edges appears with probability

p, independent of other edges.

Let A be the property of graphs we are interested in.

Let Pr(A) = Pr(G(n,
1

2
) has property A)

=
#graphs in Gn satisfying property A

2(n
2)

(1)

which is a function of n.

De�nition 10. We say random graphG(n, 1
2
) almost surely satis�es property

A, if limn→+∞Pr(A) = 1. If limn→+∞Pr(A) = 0, then G(n, 1
2
) almost surely

not satisfy property A.

Consider property A=bipartiteness.

Theorem 11. Random Graph G(n, 1
2
) almost surely is NOT bipartite.

Proof. Let A=the event that G(n, 1
2
) is bipartite. For U ∈ 2[n], let AU be the

event that all edges of G are between U and [n]\U .

=⇒ A =
⋃

U∈[n]

AU

What is Pr(AU)?

By de�nition,

Pr(AU) =
#bipartite graph G ⊂ (U, [n]\U)

2(n
2)

=
2|U |(n−|U |)

2(n
2)

≤ 2
n2

4

2
n(n−1)

2

= 2−
n2

4
+n

2

(2)
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So Pr(A) ≤
∑

U⊂[n] Pr(AU) ≤ 2n · 2−n2

4
+n

2 = 2−
n2

4
+ 3n

2 .

So limn→+∞Pr(A) = 0.

Independent Events

De�nition 12. k eventsA1, A2, ..., Ak are independent if ∀I ⊂ [n], Pr(
⋂

i∈I Ai) =∏
i∈I Pr(Ai).

De�nition 13. A Tournament of n vertices is a directed graph obtained

from the clique Kn by assigning a direction to each edge of Kn. We say a

vertex i beats vertex j if there exists: i −→ j.

De�nition 14. A tournament T has property Sk: for any subset A of size

k, there are exists a vertex beats all vertices of A.

Question: For ∀k ≥ 2, does it exist a T with property Sk? Yes!

Theorem 15. For ∀k ≥ 2, if
(
n
k

)
(1 − 1

2k
)n−k < 1, then there exists a tour-

nament T on n vertices satisfying property Sk.

Proof. We show this by considering a Random Tournament an [n]. For any

i<j, the i −→ j occurs with probability 1
2
, independent of other choices. Let

B be the event that T doesn't satisfy Sk. For A ∈
(

[n]
k

)
, let BA be the event

that all vertices in [n]\A can not beat every vertex of A.

=⇒ B =
⋃

A∈([n]
k )

BA

For x ∈ [n]\A, let BA,x be the event that x can not beat every vertex of A.

=⇒ BA =
⋂

x∈[n]\A

BA,x
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Clearly, Pr(BA,x) = 1− (1
2
)k.

Note that only the arcs between x and A will e�ect the event BA,x, and

these arcs for distinct vertices x's are disjoint. Thus, all events B′A,xs for all

x ∈ [n]\A are independent.

=⇒ Pr(BA) = Pr(
⋂
x/∈A

BA,x) =
∏
x/∈A

Pr(BA,x) = (1− (
1

2
)k)n−k

By union bound,

Pr(B) ≤
∑

A∈([n]
k )

Pr(BA) ≤
(
n

k

)
(1− (

1

2
)k)n−k < 1.

Thus, Pr(B
c) > 0, i.e. there exists a tournament on [n] satisfying property

Sk.

Corollary: ∀k ≥ 2, there exists a minimal f(k) and a tournament on f(k)

vertices satisfying property Sk.

� k=3, as
(

91
3

)
(7

8
)88 < 1, ⇒ f(3) ≤ 91.

The Linearity of Expectation

� ∀X, Y,E[X + Y ] = E[X] + E[Y ]

� Pr(X ≥ E[X]) > 0

� Pr(X ≤ E[X]) > 0

De�nition 16. Set A is a sum-free: if ∀x, y ∈ A, x + y /∈ A.
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Recall: The maximum sum-free set in [2n] is of size n. A = {n + 1, n +

2, ..., 2n} or A = {odd integers}

Theorem 17. For any set A of non-zero integers, there is a sum-free set

B ⊂ A with |B| ≥ |A|
3
.

Proof. We will choose prime p large enough s.t.p > |a| for ∀a ∈ A.

Consider Zp = {0, 1, ..., p− 1}. There is a sum-free set under Zp(modp):

S = {dp
3
e, dp

3
e+ 1, ..., d2p

3
e}

We proceed by reducing the original problem to Zp. For x ∈ Z∗p = Zp\{0},

let Ax = {a ∈ A : (ax modp) ∈ S}.

Claim: ∀x ∈ Z∗p , Ax is a sum-free subset of A.

Proof. For a, b ∈ Ax, (ax modp) ∈ S, (bx modp) ∈ S,

=⇒ (ax + bx modp) /∈ S(as S is sum-free mod p)

Then, we want to �nd some x ∈ Z∗p , s.t. |Ax| ≥ |A|
3
. Choose x ∈ Z∗p

uniformly at random. We compute E[|Ax|].

Note that |Ak| =
∑

a∈A 1{(ax modp)∈S}, so

E[|Ax|] =
∑
a∈A

E[1{(ax modp)∈S}] =
∑
a∈A

Pr((ax modp) ∈ S)

Observe that for �xed a ∈ A, running over all x ∈ Z∗p , then (ax modp) will

also run over all Z∗p .

=⇒ Pr((ax modp) ∈ S) =
|S|
p− 1

≥ 1

3
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So E[|Ax|] =
∑
a∈A

Pr((ax modp) ∈ S) ≥ |A|
3

Then, there must exist some x ∈ Z∗p , s.t. |Ax| ≥ E[|Ax|] ≥ |A|
3
, where Ax

is sum-free.

De�nition 18. A dominator set of a graph G is a subset A ⊂ V (G) s.t.

every u ∈ V \A has a neighbor in A.
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