Combinatorics, 2016 Fall, USTC
Week 13, November 29 & December 1

Ramsey’s Theorem

Theorem 1. Let n, k satisfying (2)21_(3) < 1. Then R(s,s) > n.

Proof. We need to find a 2-edge-coloring of K, such that it has NO monochro-
matic clique K.

Consider a random 2-edge-coloring of K,: each edge is colored by blue or
red, each with probability %, independent of other edges.

Let A be the event that the so-defined K, has a monochromatic K. For
X € ([Z]), let Ax be the event that X is a monochromatic K,. «— A =

UX€<[:]>AX

n\ (s
P(A)=P (UXG([Zl)Ax> < Z P(Ax) = (3)2 (3) < 1,
xe(2)
Thus P(A¢) > 0, that is the probability that K, has NO monochromatic

K is positive. So there must exist a 2-edge-coloring of K, such that it has

NO monochromatic clique Kj.
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Corollary 2. R(k,k) > sak2e.

Proof. Let n = e\l/ik‘Q% (%)Uk. Recall that (Z) < "k—’f and k! > e (f)k, thus

we have that




by substituting n = - k2% (%)l/k, it becomes that (2)21_(5) < 1. By Theo-

e

S

rem, we get

1 ko
Rk, k) >n = ——k25 (5> > 2k,

eV2 2 ev'2
|
Corollary 3.
p < i P <
Proof. This can be derived from R(s,s) < (*7) |

The Probabilistic Methods in Combinatorics

We remark on the following two ideas in the proof.

(i). Imagine we need to find some combinatorial object satisfying certain
property, call them “good” object. We consider a random object. If the
probability that the random object is “good” is positive, then there must
exist “good” objects.

(ii). To compute the probability of being “good”, we often compute the
probability of being “bad” and aim to prove this probability is strictly less
than 1.

Definition 4. A probability space is (€2, P), where € is a finite set and P :
2% — [0,1] is a function assigning a number in the interval [0, 1] to every

subset of {2 such that

(i) P(Q) =1, and
(iii) P(AUB) = P(A) + P(B) for disjoint sets A, B C Q.
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Any subset A of (2 is called an event, and P(A) =) .o P({w}).

A random variable is a function X : Q — R

Expectation: E[X]:=3" ., P({w}) - X(w).

Two events A, B in the probability space (2, P) are independent if

P(AN B) = P(A)P(B).

The linearity of expectations. For any two random variables X

and Y on €2, we have

E[X +Y] = E[X] + B[]

Definition 5. Let F be a family of sets. We say F is a k-family, if every set

in F is of size k.

Definition 6. Let X = UscrA, we say F is 2-colorable if there exists a func-
tion f : X — {blue, red} such that every set A € F is not monochromatic

(i.e. A has at least one blue element of X and at least one red element of

X).

Remark. When k = 2, 2-family F can be viewed as a graph G. Then F is
2-colorable iff G is bipartite.

Definition 7. For Vk, let m(k) := min|F| over all k-family F which are
NOT 2-colorable.



(1) m(k) < t & Fk-family F which is not 2-colorable but |F| = t.
(2) m(k) >t < Vk-family F with |F| =t is 2-colorable.
Fact:m(2) =3

Theorem 8. m(k) > 281 < cvery k-family F with |F| = 2¥1 — 1 is

2-colorable.

Proof. We need to find a function f : X — {blue, red} where X = UyecrA
s.t. VA € F has a blue element and a red element. We sat such f is good.
Otherwise call it bad. We then consider a random function ¢ on X, that
is each x € X is colored by blue or red with probability %, independent of
other choice. Let B be the event that ¢ is bad, i.e. there exists some A € F
which is monochromatic.

For A € F, let B4 be the event that A is monochromatic. So B =
UaerBa.

It is easy to see for VA € F
1
P(Ba) = 2(§)l_k = 2!*

Thus,

p(B) <> P(Ba)=|Fl2"* <1
AeF

So P(y is good) = P(B®) > 0.
Since

d ti
P(y is good) = # good functions

all functions

= there must exist good functions. 1



Definition 9. The random graph G(n,p) for 0 < p < 1is a graph with vertex
set {1,2,...,n}, where each of potential (Z) edges appears with probability
p, independent of other edges.

Let A be the property of graphs we are interested in.

1
Let PT(A):PT(G(n,? has property A)

_ #graphs in G, satisfying property A (1)
2(3)

which is a function of n.

Definition 10. We say random graph G(n, %) almost surely satisfies property
AL if limy, 1 oo Pr(A) = 1. If limy, 1 o Pr(A) = 0, then G(n, %) almost surely

not satisfy property A.
Consider property A=Dbipartiteness.

Theorem 11. Random Graph G(n, 3) almost surely is NOT bipartite.

Proof. Let A—=the event that G(n, %) is bipartite. For U € 2" let Ay be the
event that all edges of G are between U and [n]\U.

— A= ] Ay

U€ln]

What is P,.(Ay)?
By definition,

bipartite graph G C (U, |n|]\U
P (Ay) = 0P grap (U, [n\U)

»
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Independent Events

Definition 12. k events Ay, Ay, ..., Ay are independent if VI C [n], P.((,c; Ai) =
HiEI PT(Ai>-
Definition 13. A Tournament of n vertices is a directed graph obtained

from the clique K, by assigning a direction to each edge of K,. We say a

vertex i beats vertex j if there exists: i« — j.

Definition 14. A tournament T has property Si: for any subset A of size

k, there are exists a vertex beats all vertices of A.
Question: For Vk > 2, does it exist a T with property 5,7 Yes!

Theorem 15. For Vk > 2, if (})(1 — 55)" " < 1, then there ezists a tour-

nament T on n vertices satisfying property Sy.

Proof. We show this by considering a Random Tournament an [n|. For any
i<j, the ¢ — j occurs with probability %, independent of other choices. Let
B be the event that T doesn’t satisfy S. For A € ([Z}), let B4 be the event

that all vertices in [n]\ A can not beat every vertex of A.

— B = By
Ae()
For z € [n]\A, let B4, be the event that x can not beat every vertex of A.
- BA = ﬂ BA722
z€[n]\A
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Clearly, P,(Bag) =1— (1)~
Note that only the arcs between x and A will effect the event By ,, and
these arcs for distinct vertices x’s are disjoint. Thus, all events B, ,s for all

x € [n]\A are independent.

— P(B) = PA() Bag) = [[ Po(Bas) = (1= ()

¢ A ¢ A
By union bound,
n 1
P.(B) < < — () <1,
()= S nis < (})a- gt <
4e()

Thus, P.(B¢) > 0, i.e. there exists a tournament on |n| satisfying property
Sk

Corollary: Vk > 2, there exists a minimal f(k) and a tournament on f(k)

vertices satisfying property S;.

e k=3,as (})(5)® <1, = f(3) <9L

The Linearity of Expectation

e VX, Y,E[X +Y]=FE[X|+ E[Y]
o P(X > E[X]) >0
o P.(X <E[X])>0
Definition 16. Set A is a sum-free: if Vo,y € A,z +y ¢ A.
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Recall: The maximum sum-free set in [2n] is of sizen. A ={n+1,n+
2,...,2n} or A = {odd integers}
Theorem 17. For any set A of non-zero integers, there is a sum-free set
B C A with |B| > 4.

Proof. We will choose prime p large enough s.t.p > |a| for Va € A.
Consider Z, = {0,1,...,p — 1}. There is a sum-free set under Z,(modp):

= (24, T2

We proceed by reducing the original problem to Z,. Forz € Z; = Z,\{0},
let A, ={a € A:(ax modp) € S}.

Claim: Vz € Z;, A, is a sum-free subset of A.

Proof. For a,b € A,, (ax modp) € S, (bx modp) € S,
= (ax + bx modp) ¢ S(as S is sum-free mod p)
|

Then, we want to find some x € 7%, s.t. |A,| > %. Choose = € Z;
uniformly at random. We compute E[|A.|].

Note that ‘Ak| = ZaeA 1{(ax modp)€S}; SO

El|A.]] = ZE Li(az  modp)esy) ZP ax modp) € 5)

acA a€A

Observe that for fixed a € A, running over all z € Z, then (ax modp) will

also run over all Z;.

= P.((ax modp) € §) = ——



w|£

So E[A,]] =) P.((ax modp) € 5) >

acA

Then, there must exist some x € Z, s.t. |A,] > E[[A,|]] > %, where A,

is sum-free.

Definition 18. A dominator set of a graph G is a subset A C V(G) s.t.

every u € V\ A has a neighbor in A.



