Combinatorics, 2016 Fall, USTC

Week 13, November 29 & December 1

Ramsey's Theorem

Theorem 1. Let n, k satisfying $\binom{n}{s} 2^{1-\binom{s}{2}} < 1$. Then R(s, s) > n.

Proof. We need to find a 2-edge-coloring of K_n such that it has NO monochromatic clique K_s .

Consider a random 2-edge-coloring of K_n : each edge is colored by blue or red, each with probability $\frac{1}{2}$, independent of other edges.

Let A be the event that the so-defined K_n has a monochromatic K_s . For $X \in {[n] \choose s}$, let A_X be the event that X is a monochromatic K_s . $\longleftrightarrow A = \bigcup_{X \in {[n] \choose s}} A_X$

$$P(A) = P\left(\bigcup_{X \in \binom{[n]}{s}} A_X\right) \le \sum_{X \in \binom{[n]}{s}} P(A_X) = \binom{n}{s} 2^{1 - \binom{s}{2}} < 1,$$

Thus $P(A_C) > 0$, that is the probability that K_n has NO monochromatic K_s is positive. So there must exist a 2-edge-coloring of K_n such that it has NO monochromatic clique K_s .

Corollary 2. $R(k,k) \geq \frac{1}{e\sqrt{2}}k2^{\frac{k}{2}}$.

Proof. Let $n = \frac{1}{e\sqrt{2}}k2^{\frac{k}{2}}\left(\frac{e}{2}\right)^{1/k}$. Recall that $\binom{n}{k} < \frac{n^k}{k!}$ and $k! \ge e\left(\frac{k}{e}\right)^k$, thus we have that

$$\binom{n}{k} 2^{1 - \binom{k}{2}} < \frac{n^k}{e\left(\frac{k}{2}\right)^k} 2^{1 - \binom{k}{2}} = \left(\frac{en}{k}\right)^k \cdot \left(\frac{2}{e}\right) \cdot 2^{-\binom{k}{2}};$$

by substituting $n = \frac{1}{e\sqrt{2}}k2^{\frac{k}{2}}\left(\frac{e}{2}\right)^{1/k}$, it becomes that $\binom{n}{k}2^{1-\binom{k}{2}} < 1$. By Theorem, we get

$$R(k,k) > n = \frac{1}{e\sqrt{2}}k2^{\frac{k}{2}} \left(\frac{e}{2}\right)^{1/k} \ge \frac{1}{e\sqrt{2}}k2^{\frac{k}{2}}.$$

Corollary 3.

$$\frac{1}{2} \leqslant \lim_{s \to \infty} \frac{\log_2 R(s, s)}{s} \leqslant 2$$

Proof. This can be derived from $R(s,s) \leqslant {2s-2 \choose s-1}$

The Probabilistic Methods in Combinatorics

We remark on the following two ideas in the proof.

- (i). Imagine we need to find some combinatorial object satisfying certain property, call them "good" object. We consider a random object. If the probability that the random object is "good" is positive, then there must exist "good" objects.
- (ii). To compute the probability of being "good", we often compute the probability of being "bad" and aim to prove this probability is strictly less than 1.

Definition 4. A probability space is (Ω, P) , where Ω is a finite set and P: $2^{\Omega} \to [0, 1]$ is a function assigning a number in the interval [0, 1] to every subset of Ω such that

- (i) $P(\emptyset) = 0$,
- (ii) $P(\Omega) = 1$, and
- (iii) $P(A \cup B) = P(A) + P(B)$ for disjoint sets $A, B \subset \Omega$.

- Any subset A of Ω is called an *event*, and $P(A) = \sum_{\omega \in \Omega} P(\{\omega\})$.
- A random variable is a function $X: \Omega \to R$
- Expectation: $E[X] := \sum_{\omega \in \Omega} P(\{\omega\}) \cdot X(\omega)$.
- Two events A, B in the probability space (Ω, P) are independent if

$$P(A \cap B) = P(A)P(B).$$

• The linearity of expectations. For any two random variables X and Y on Ω , we have

$$E[X+Y] = E[X] + E[Y]$$

.

Definition 5. Let \mathcal{F} be a family of sets. We say \mathcal{F} is a k-family, if every set in \mathcal{F} is of size k.

Definition 6. Let $X = \bigcup_{A \in \mathcal{F}} A$, we say \mathcal{F} is 2-colorable if there exists a function $f: X \to \{\text{blue, red}\}$ such that every set $A \in \mathcal{F}$ is not monochromatic (i.e. A has at least one blue element of X and at least one red element of X).

Remark. When k=2, 2-family \mathcal{F} can be viewed as a graph G. Then \mathcal{F} is 2-colorable iff G is bipartite.

Definition 7. For $\forall k$, let $m(k) := \min |\mathcal{F}|$ over all k-family \mathcal{F} which are NOT 2-colorable.

- (1) $m(k) \leq t \Leftrightarrow \exists k$ -family \mathcal{F} which is not 2-colorable but $|\mathcal{F}| = t$.
- (2) $m(k) > t \Leftrightarrow \forall k$ -family \mathcal{F} with $|\mathcal{F}| = t$ is 2-colorable.

Fact: m(2) = 3

Theorem 8. $m(k) \ge 2^{k-1} \Leftrightarrow every \ k\text{-family } \mathcal{F} \ with \ |\mathcal{F}| = 2^{k-1} - 1 \ is 2\text{-colorable}.$

Proof. We need to find a function $f: X \to \{\text{blue}, \text{red}\}$ where $X = \bigcup_{A \in \mathcal{F}} A$ s.t. $\forall A \in \mathcal{F}$ has a blue element and a red element. We sat such f is good. Otherwise call it bad. We then consider a random function φ on X, that is each $x \in X$ is colored by blue or red with probability $\frac{1}{2}$, independent of other choice. Let B be the event that φ is bad, i.e. there exists some $A \in \mathcal{F}$ which is monochromatic.

For $A \in \mathcal{F}$, let B_A be the event that A is monochromatic. So $B = \bigcup_{A \in \mathcal{F}} B_A$.

It is easy to see for $\forall A \in \mathcal{F}$

$$P(B_A) = 2(\frac{1}{2})^{1-k} = 2^{1-k}$$

Thus,

$$p(B) \leqslant \sum_{A \in \mathcal{F}} P(B_A) = |\mathcal{F}| 2^{1-k} < 1$$

So $P(\varphi \text{ is } good) = P(B^C) > 0.$

Since

$$P(\varphi \ is \ good) = \frac{\# \ good \ functions}{all \ functions} > 0$$

 \Rightarrow there must exist good functions.

Definition 9. The random graph G(n,p) for $0 \le p \le 1$ is a graph with vertex set $\{1,2,...,n\}$, where each of potential $\binom{n}{2}$ edges appears with probability p, independent of other edges.

Let A be the property of graphs we are interested in.

Let
$$P_r(A) = P_r(G(n, \frac{1}{2}) \text{ has property } A)$$

$$= \frac{\#graphs \text{ in } \mathcal{G}_n \text{ satisfying property } A}{2\binom{n}{2}}$$
(1)

which is a function of n.

Definition 10. We say random graph $G(n, \frac{1}{2})$ almost surely satisfies property A, if $\lim_{n\to+\infty} P_r(A) = 1$. If $\lim_{n\to+\infty} P_r(A) = 0$, then $G(n, \frac{1}{2})$ almost surely not satisfy property A.

Consider property A=bipartiteness.

Theorem 11. Random Graph $G(n, \frac{1}{2})$ almost surely is NOT bipartite.

Proof. Let A=the event that $G(n, \frac{1}{2})$ is bipartite. For $U \in 2^{[n]}$, let A_U be the event that all edges of G are between U and $[n] \setminus U$.

$$\Longrightarrow A = \bigcup_{U \in [n]} A_U$$

What is $P_r(A_U)$?

By definition,

$$P_{r}(A_{U}) = \frac{\#bipartite \quad graph \quad G \subset (U, [n] \setminus U)}{2^{\binom{n}{2}}}$$

$$= \frac{2^{|U|(n-|U|)}}{2^{\binom{n}{2}}} \le \frac{2^{\frac{n^{2}}{4}}}{2^{\frac{n(n-1)}{2}}} = 2^{-\frac{n^{2}}{4} + \frac{n}{2}}$$
(2)

So
$$P_r(A) \le \sum_{U \subset [n]} P_r(A_U) \le 2^n \cdot 2^{-\frac{n^2}{4} + \frac{n}{2}} = 2^{-\frac{n^2}{4} + \frac{3n}{2}}.$$

So $\lim_{n \to +\infty} P_r(A) = 0.$

Independent Events

Definition 12. k events $A_1, A_2, ..., A_k$ are independent if $\forall I \subset [n], P_r(\bigcap_{i \in I} A_i) = \prod_{i \in I} P_r(A_i)$.

Definition 13. A Tournament of n vertices is a directed graph obtained from the clique K_n by assigning a direction to each edge of K_n . We say a vertex i beats vertex j if there exists: $i \longrightarrow j$.

Definition 14. A tournament T has property S_k : for any subset A of size k, there are exists a vertex beats all vertices of A.

Question: For $\forall k \geq 2$, does it exist a T with property S_k ? Yes!

Theorem 15. For $\forall k \geq 2$, if $\binom{n}{k}(1-\frac{1}{2^k})^{n-k} < 1$, then there exists a tournament T on n vertices satisfying property S_k .

Proof. We show this by considering a Random Tournament an [n]. For any i < j, the $i \longrightarrow j$ occurs with probability $\frac{1}{2}$, independent of other choices. Let B be the event that T doesn't satisfy S_k . For $A \in {[n] \choose k}$, let B_A be the event that all vertices in $[n] \setminus A$ can not beat every vertex of A.

$$\Longrightarrow B = \bigcup_{A \in \binom{[n]}{k}} B_A$$

For $x \in [n] \setminus A$, let $B_{A,x}$ be the event that x can not beat every vertex of A.

$$\Longrightarrow B_A = \bigcap_{x \in [n] \setminus A} B_{A,x}$$

Clearly, $P_r(B_{A,x}) = 1 - (\frac{1}{2})^k$.

Note that only the arcs between x and A will effect the event $B_{A,x}$, and these arcs for distinct vertices x's are disjoint. Thus, all events $B'_{A,x}s$ for all $x \in [n] \setminus A$ are independent.

$$\implies P_r(B_A) = P_r(\bigcap_{x \notin A} B_{A,x}) = \prod_{x \notin A} P_r(B_{A,x}) = (1 - (\frac{1}{2})^k)^{n-k}$$

By union bound,

$$P_r(B) \le \sum_{A \in \binom{[n]}{k}} P_r(B_A) \le \binom{n}{k} (1 - (\frac{1}{2})^k)^{n-k} < 1.$$

Thus, $P_r(B^c) > 0$, i.e. there exists a tournament on [n] satisfying property S_k .

Corollary: $\forall k \geq 2$, there exists a minimal f(k) and a tournament on f(k) vertices satisfying property S_k .

• k=3, as $\binom{91}{3}(\frac{7}{8})^{88} < 1$, $\Rightarrow f(3) \le 91$.

The Linearity of Expectation

- $\bullet \ \forall X,Y, E[X+Y] = E[X] + E[Y]$
- $P_r(X \ge E[X]) > 0$
- $P_r(X \leq E[X]) > 0$

Definition 16. Set A is a sum-free: if $\forall x, y \in A, x + y \notin A$.

Recall: The maximum sum-free set in [2n] is of size n. $A = \{n+1, n+2, ..., 2n\}$ or $A = \{\text{odd integers}\}$

Theorem 17. For any set A of non-zero integers, there is a sum-free set $B \subset A$ with $|B| \ge \frac{|A|}{3}$.

Proof. We will choose prime p large enough s.t.p > |a| for $\forall a \in A$.

Consider $Z_p = \{0, 1, ..., p-1\}$. There is a sum-free set under $Z_p(modp)$:

$$S = \{\lceil \frac{p}{3} \rceil, \lceil \frac{p}{3} \rceil + 1, ..., \lceil \frac{2p}{3} \rceil \}$$

We proceed by reducing the original problem to Z_p . For $x \in Z_p^* = Z_p \setminus \{0\}$, let $A_x = \{a \in A : (ax \mod p) \in S\}$.

Claim: $\forall x \in \mathbb{Z}_p^*$, A_x is a sum-free subset of A.

Proof. For $a, b \in A_x$, $(ax \mod p) \in S$, $(bx \mod p) \in S$, $\implies (ax + bx \mod p) \notin S$ (as S is sum-free mod p)

Then, we want to find some $x \in \mathbb{Z}_p^*$, s.t. $|A_x| \geq \frac{|A|}{3}$. Choose $x \in \mathbb{Z}_p^*$ uniformly at random. We compute $E[|A_x|]$.

Note that $|A_k| = \sum_{a \in A} 1_{\{(ax \mod p) \in S\}}$, so

$$E[|A_x|] = \sum_{a \in A} E[1_{\{(ax \mod p) \in S\}}] = \sum_{a \in A} P_r((ax \mod p) \in S)$$

Observe that for fixed $a \in A$, running over all $x \in \mathbb{Z}_p^*$, then (ax modp) will also run over all \mathbb{Z}_p^* .

$$\implies P_r((ax \mod p) \in S) = \frac{|S|}{p-1} \ge \frac{1}{3}$$

So
$$E[|A_x|] = \sum_{a \in A} P_r((ax \mod p) \in S) \ge \frac{|A|}{3}$$

Then, there must exist some $x \in \mathbb{Z}_p^*$, s.t. $|A_x| \ge E[|A_x|] \ge \frac{|A|}{3}$, where A_x is sum-free.

Definition 18. A dominator set of a graph G is a subset $A \subset V(G)$ s.t. every $u \in V \setminus A$ has a neighbor in A.